ESERCITAZIONE FINALE
(21 gennaio 2026)

Corso: 3770/10840604-011/606/DEC/25

Titolo: ESPERTO IN SICUREZZA INFORMATICA - ED. ROVIGO

Sede: ROVIGO (RO), Via N. Badaloni 2

Modulo 3: MONITORAGGIO DELLA SICUREZZA DEL SISTEMA INFORMATIVO
Docente: Davide Gessi

Corsista: Riccardo Berto

Valutazione: 10/10



Securing Software Esercitazione

o

. Attraverso quali tecniche un attore malevolo potrebbe “craccare” un software, cioé

bypassare la registrazione o il pagamento per poterlo usare gratuitamente?

. Distingui la natura dei due tipi di attacchi “cross-site” discussi:

- Cross-Site Scripting (XSS)
- Cross-Site Request Forgery (CSRF)

. Perché é necessario “fare I'escape” (cioé neutralizzare) alcuni caratteri nei dati di input?

Nel contesto di SQL, che cos’é una prepared statement (istruzione preparata)?

. Perché la validazione lato client (client-side validation) é considerata meno sicura rispetto

a quella lato server (server-side validation)?

. Riferimento alla vignetta GeekHero

Dal punto di vista pratico, la vignetta sopra ha probabilmente ragione nel rappresentare il
comportamento della maggior parte degli utenti verso il software open-source.

Tuttavia, anche se questo fosse la tua opinione, perché potrebbe comunque essere una
buona idea usare (o sviluppare) piu software open-source, dal punto di vista della
sicurezza informatica?

In che modo i package manager (come apt, yum, npm, ecc.) sono simili agli app store
(Apple App Store, Google Play Store, Microsoft Store, ecc.) dal punto di vista della
cybersecurity?

Contro quale tipo di minaccia aiuta a difendersi ’uso del campo Content-Security-Policy
(CSP) nel nostro codice sorgente?

. Fornisci un esempio concreto di una situazione in cui potresti voler usare il metodo HTTP

POST invece del metodo GET.

10.Heartbleed (CVE-2014-0160)

Il bug noto come Heartbleed, scoperto nel 2014, genero un’enorme preoccupazione su
Internet: fu uno dei primi casi in cui una vulnerabilita informatica venne diffusa anche
dai media generalisti, mentre i ricercatori di sicurezza cercavano di avvisare il pubblico e
incoraggiare un aggiornamento urgente dei sistemi.

Leggi informazioni su Heartbleed, ad esempio dalla pagina Wikipedia o da altre fonti
affidabili (come un video divulgativo).

Perché Heartbleed rappresentava una minaccia cosi grave per la sicurezza degli utenti?
Qua la vignetta obbligatoria xkcd


http://www.geekherocomic.com/2009/02/11/everything-is-open-source-actually/index.html
https://xkcd.com/1354/

Risposte:

1. Un attore malevolo pud craccare un software utilizzando tecniche di reverse engineering
per analizzare l'eseguibile e comprenderne il funzionamento interno. Tramite
disassembler e debugger puo individuare i controlli di registrazione o pagamento
presenti nel codice. Una volta trovati, tali controlli possono essere aggirati applicando
patch binarie che modificano direttamente le istruzioni dell'eseguibile. In alternativa, &
possibile sviluppare keygen che ricreano l'algoritmo di generazione delle chiavi di licenza.
Altre tecniche includono I'hooking delle API per intercettare e falsificare i risultati dei
controlli, 'emulazione di server o dispositivi di licenza e il tampering della memoria a
runtime per alterare variabili come i flag di licenza. Eccellente. Tutte le principali tecniche
di cracking menzionate, spiegazione chiara e ordinata.

2. Il Cross-Site Scripting (XSS) € un attacco in cui un aggressore inietta codice malevolo,
tipicamente JavaScript, in una pagina web che viene poi eseguito nel browser della
vittima. Questo avviene quando l'input dell'utente non viene correttamente validato o
“escaped” e viene interpretato come codice. Il Cross-Site Request Forgery (CSRF), invece,
induce il browser di una vittima autenticata a inviare richieste non intenzionali verso un
sito web, sfruttando i cookie di sessione gia validi. A differenza dell'’XSS, nel CSRF non
viene eseguito codice sul sito bersaglio, ma si sfrutta la fiducia del server nel browser
dell'utente. In sintesi, I'XSS sfrutta la fiducia dell'utente nel sito, mentre il CSRF sfrutta la
fiducia del sito nell'utente. Molto buona. Differenza XSS e CSRF corretta Concetti chiave
chiari

3. E necessario fare I'escape dei caratteri di input perché alcuni caratteri speciali possono
essere interpretati come codice anziché come semplici dati. Senza escaping, un input
fornito dall'utente potrebbe alterare la struttura di una pagina HTML, di uno script o di
una query SQL. Questo puo portare ad attacchi di injection, come Cross-Site Scripting o
SQL injection. L'escaping trasforma i caratteri pericolosi in una rappresentazione sicura,
impedendone l'esecuzione. In questo modo l'input viene trattato esclusivamente come
testo e non come istruzioni. Lescape € quindi una misura fondamentale per garantire che
i dati dell'utente non compromettano il comportamento dell'applicazione.Buono. Concetto
corretto di escape, con attenzione a contesto HTML/JS/SQL

4. Una prepared statement & un’istruzione SQL in cui la struttura della query viene definita e

compilata separatamente dai dati forniti dall'utente. La query contiene dei segnaposto



per i parametri, che vengono successivamente associati a valori concreti. In questo
modo, I'input dellutente non viene interpretato come parte del codice SQL, ma solo come
dato. Questo meccanismo previene efficacemente le SQL injection, poiché i caratteri
speciali non possono modificare la logica della query. Inoltre, le prepared statement
migliorano l'efficienza quando la stessa query viene eseguita piu volte, riducendo il lavoro
di parsing del database. Corretto. Prepared statement spiegato bene, sia lato sicurezza sia lato
efficienza.

La validazione lato client & considerata meno sicura perché viene eseguita nel browser
dell'utente, che non & un ambiente fidato. Un attaccante puo facilmente aggirare questi
controlli disabilitando JavaScript o modificando le richieste inviate al server. E possibile
inviare dati arbitrari direttamente tramite strumenti come curl o proxy di intercettazione.
La validazione lato server, invece, avviene in un ambiente controllato dallapplicazione e
non puo essere manipolata dall'utente. Per questo motivo, ogni dato ricevuto dal client
deve essere sempre validato nuovamente sul server. La validazione client-side puo
migliorare l'esperienza utente, ma non deve mai essere considerata una misura di
sicurezza sufficiente. Molto buono. Spiegato chiaramente.

Anche se molti utenti non analizzano direttamente il codice sorgente, il software open-
source offre importanti vantaggi di sicurezza. Il codice pubblico puo essere esaminato da
una vasta comunita di sviluppatori ed esperti di sicurezza, aumentando la probabilita che
vulnerabilita e bug vengano individuati. Questo approccio riduce la dipendenza dal
“security through obscurity”, che non garantisce una reale protezione. Inoltre, le
vulnerabilita scoperte possono essere corrette rapidamente dalla comunita senza
attendere un singolo vendor. La trasparenza del codice consente anche di verificare
I'assenza di backdoor o comportamenti malevoli. Nel complesso, 'open-source favorisce
una maggiore robustezza e affidabilita dei sistemi. Molto buono. Vantaggi open-source ben
spiegati

Dal punto di vista della cybersecurity, i package manager e gli app store svolgono un
ruolo simile nella distribuzione del software. Entrambi forniscono repository centralizzati
da cui gli utenti scaricano applicazioni provenienti da fonti considerate affidabili.
Utilizzano meccanismi di verifica dell'integrita e dell'autenticita, come le firme digitali, per
prevenire la manomissione dei pacchetti. Inoltre, consentono aggiornamenti automatici
che includono patch di sicurezza. Questo modello riduce il rischio di installare software

malevolo da fonti non controllate. Tuttavia, una compromissione del repository o dello



10.

store puod avere un impatto su un grande numero di utenti, rendendo critica la sicurezza
della catena di distribuzione. Buono. Confronto tra package manager e app store chiaro

La Content-Security-Policy (CSP) aiuta a difendersi principalmente da attacchi di Cross-
Site Scripting (XSS). Attraverso specifiche direttive, la CSP limita le sorgenti da cui il
browser puo caricare ed eseguire script, stili e altre risorse. In questo modo viene
impedita I'esecuzione di codice inline o proveniente da domini non autorizzati. Anche in
presenza di una vulnerabilita di injection, la CSP puo ridurre o annullare I'impatto
dell'attacco. La CSP rappresenta quindi una difesa aggiuntiva lato browser contro
I'esecuzione di codice malevolo. Corretto. CSP spiegata con precisione

Un esempio concreto in cui e preferibile usare il metodo HTTP POST e l'invio di dati
sensibili tramite un form, come nel caso di un acquisto o di un login. Con il metodo GET, i
parametri vengono inseriti nellURL e possono essere salvati nella cronologia del browser
o nei log del server. Inoltre, una richiesta GET puo essere facilmente attivata in modo
involontario, ad esempio tramite un tag img, facilitando attacchi CSRF. Il metodo POST
invia invece i dati nel corpo della richiesta, riducendo la visibilita dei parametri. Luso di
POST richiede un’azione piu esplicita dell'utente e consente l'integrazione di meccanismi
di protezione come i token CSRF. Buono. POST spiegato bene, con cenno a CSRF
Heartbleed era una vulnerabilita critica perché permetteva a un attaccante remoto di
leggere porzioni arbitrarie della memoria di un server che utilizzava OpenSSL. Questo
avveniva senza necessita di autenticazione e senza lasciare tracce evidenti. Attraverso
guesto bug era possibile ottenere informazioni estremamente sensibili, come password,
cookie di sessione e persino chiavi private TLS. Poiché OpenSSL era ampiamente diffuso,
la vulnerabilita colpiva una vasta parte dell'infrastruttura HTTPS globale. La
compromissione delle chiavi private rendeva inoltre inutili le comunicazioni cifrate,

minando la fiducia nella sicurezza di Internet. Perfetto. Heartbleed spiegato correttamente



	Securing Software Esercitazione
	Risposte:

